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ABSTRACT

We consider the minimization of long-term average power consumption for packet transmission between a mobile station and
the base station over Nakagami-m fading channel. Power consumption is minimized by intelligent transmission scheduling
design, with the average queuing delay and joint packet loss across MAC and physical layers being confined below
certain levels. The problem is formulated as an infinite horizon constrained Markov decision problem and solved by linear
programming (LP) method. The primary intention of this paper is to provide a visible paradigm on using LP method to
optimize the performance of mobile wireless communication systems. We elaborate the detailed mathematical solution
with consistent simulation experiments and emphasize the effectiveness of adaptive transmission scheduling for cross-layer
QoS provisioning. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In mobile broadband communication systems, adaptive
transmission has been accepted as an effective solution
to provide quality-of-service (QoS) for non-uniform traf-
fic flows over time-varying wireless fading channel. The
advantages of adaptive transmission in such systems are
two-fold. On one side, by varying the media access control
(MAC) layer data rate released to the physical (PHY) layer
interface, performance impairments due to channel varia-
tion and bursty traffic profiles can be minimized. By varying
the PHY layer transmission power along with MAC layer
data rate, on the other side, energy consumption for provid-
ing required QoS can be optimized. Therefore, an efficient
transmission scheduling strategy can best utilize the wire-
less channel dynamic and real-time traffic characteristic to
improve MAC-PHY cross-layer performance, with min-
imal average power consumption. In previous research,
power adaptation schemes either require error-free trans-
mission over the channel or enforce dropping-exempt MAC

queuing, both cost increased energy budget due to higher
instantaneous transmission power required to achieve such
conditions. Moreover, though many research works have
studied on constrained Markov Decision Process and Lin-
ear Programming (LP) theories and acknowledged their
applicability to wireless communication systems, few paper
could clearly picture such an application. In this work, we
aim to fill this gap with the designed power-efficient trans-
mission scheduling method that simultaneously considers
channel loss, MAC dropping and average power drain. The
major contributes of this work are as follows: (1) this paper
illustrates the effectiveness of scheduling-based transmis-
sion power control using discrete power levels. (2) This
paper considers dynamic performance adjustment across
MAC and PHY layers to provide cross-layer QoS guaran-
tee. (3) This paper presents detailed mathematical solution
for the researched problem, which can serve as a paradigm
on solving similar problems.

The rest of this paper is organized as follows. In Section
2 we briefly review some related research work. In Section
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Figure 1. Communication system model.

3 we give the system model used for this study. Section
4 formulates the power-efficient transmission scheduling
design problem as constrained Markov decision problem
(MDP) and introduces the LP method. Section 5 elabo-
rates detailed solution on applying LP for the researched
problem. Finally, Section 6 verifies the proposed design
with simulation experiments and further comments on
the optimality, boundedness and parameterization issues
of the designed scheme, before concluding this study in
Section 7.

2. RESEARCH BACKGROUND

Power-efficient adaptive transmission has been studied
by many researchers for mobile wireless communication
systems. These research works can be roughly cate-
gorized as QoS-relevant and non-QoS-relevant designs.
The research on QoS-relevant power control mainly
focus on dynamically varying available data rate in
terms of changing transmission power to achieve cer-
tain deterministic/statistical QoS criteria, such as required
signal-to-interference ratio (SIR) [2], average queuing delay
[3--5], average buffer overflow probability [6,7], QoS expo-
nent [8,9]. Studies on non-QoS-relevant power control
[10,11], though less concerned on MAC layer performance,
are interested in maximizing channel capacity and band-
width efficiency with limited average power supply.

Most of the previous QoS-relevant adaptive transmission
schemes applied continuous data rates and power levels for
the corresponding optimal design. The effect of scheduling
based power optimization with discrete power/rate levels
has not been well studied. Moreover, in existing research
the MAC layer QoS metrics were confined exclusive of a
zero (e.g., [6]) or bounded (e.g., [7]) bit error rate (BER)
preset at the PHY layer. This limits the capability of trans-
mission scheduling by simultaneously balancing the costs at
both MAC and PHY layers, while leaving the designed opti-
mality subject to PHY layer presumptions. In this study, we
elaborate a multi-mode transmission scheduling algorithm
that minimizes long-term average power usage with joint
packet loss constraint defined across MAC and PHY lay-
ers. We believe this work combined with previous research

on this topic‡ will usher a visible guideline for solving other
similar problems.

3. MODEL DESCRIPTION

3.1. Communication system

We consider packet transmission from a wireless mobile
station to the base station, as illustrated in Figure 1. In this
model, a single-transmitting antenna and a single-receiving
antenna are separated by the time-varying wireless fad-
ing channel. At the transmitter side, packet stream arriving
from upper layers are enqueued into a limited buffer space
at the MAC layer, where overflowed packets are dropped.
Backlogged packets are dequeued, on first-come-first-serve
basis, and further processed by the forward error correction
(FEC) encoder. Codewords are then mapped into certain
number of PHY layer channel symbols at the digital mod-
ulator and finally released into the wireless channel via the
transmitting antenna. Undergoing distortion and attenua-
tion, at the receiver side, received symbols are sequentially
passed through demodulator and decoder, to retrieve MAC
layer packets. Packets that cannot be recovered due to uncor-
rectable transmission errors are dropped at the PHY layer.

The PHY layer operation runs on (time)frame-by-
(time)frame basis, where each time frame is a fixed time
duration containing multiple channel symbols. Symbols
transmitted within each time frame are functionally grouped
into frame control section and data transmission section, as
illustrated in Figure 2. The frame control section consists of
a certain number of pilot symbols permitting the receiver to
estimate instantaneous channel gain, followed by symbols
carrying uplink control information indicating transmission

‡ In Reference [7], the LP-based adaptive transmission scheduling is

introduced however with detailed mathematical derivations omitted and

yet to be experimentally verified. For example, in order to correctly

define the sought control policy in Equation (25), the packet dropping

probability cost defined in Equation (16) should be weighted by proba-

bility p(Bn−�(Un) = k) for each I(Bn−�(Un)=k). However, the value of

p(Bn−�(Un) = k) is in turn contingent on the control policy decided

by Equation (25). Such ambiguities are clearly addressed in this paper

with simulation verifications.
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data section data section data section

time frame n-1 time frame n time frame n+1

frame 
control 
section

pilot packet packet...

variable

uplink control info

no transmission

Figure 2. Illustration of time frame and its components.

mode index for different modulation and coding schemes
used to process the following data symbols. Frame control
symbols are transmitted with robust modulation/coding and
constant power level. We assume a fast feedback channel
that delivers the current channel state information (CSI) to
the mobile station before the termination of transmitting
frame control symbols. Hence the adaptive modulation and
coding (AMC) module in the mobile station can decide
the transmission mode to be applied, based on the cur-
rent CSI and its buffer occupancy, before the start of data
packet transmission in the same time frame. Moreover,
packets arriving from upper layers at the MAC layer during
[nTf , (n + 1)Tf ) are enqueued at time (n + 1)Tf and will be
serviced in one of subsequent time frames, where Tf denotes
the duration of one time frame.

3.2. Channel model

The dynamic of wireless channel is modeled as Nakagami-
m fading channel [12], which is defined by the probability
density function (PDF) of the signal-to-noise ratio (SNR)
by detecting received pilot symbols as:

pγ (γ) = mmγm−1

ρm�(m)
exp

(
−mγ

ρ

)
(1)

with

�(m) =
∫ ∞

0

tm−1e−tdt (2)

being the Gamma function, m ≥ 1
/

2 the Nakagami fad-
ing parameter, and ρ the average received SNR per symbol,
respectively. The continuous fading process is discretized
by finite state Markov channel (FSMC) model [13]. FSMC
is a block fading model for slow-varying flat fading chan-
nels, where the channel is assumed to stay in the same state
within one block period. Specifically, let 0 = �0 < �1 <

�2 < · · · < �K−1 < �K = ∞ be the SNR thresholds par-
titioning channel status, the channel is said to be in state
k = 1, 2, · · · K, if the received SNR falls into the interval of
[�k−1, �k). We define a fading block as one time frame dura-
tion depicted in subsection 3.1. As in [7,13,14], moreover,
the channel fading is assumed slow enough such that state
transition between adjacent time frames only occurs over
neighboring states. Namely, denoting pi;j as the transition
probability from state i to state j where i, j = 1, 2, · · · K,
then pi;j = 0, ∀ |i−j| ≥ 2. In such case, other state tran-

sition probabilities of the FSMC for Nakagami-m fading
channel can be found in Reference [14]. In this study, we
partition the channel with the equal probability partition
method introduced in Reference [13], although other chan-
nel partitions are also applicable. This method partitions the
received SNR beyond a threshold level γcutoff that prevents
from using deep channel fades into FSMC states such that
the stationary probability for the channel to dwell in each
usable state is equalized.

3.3. Rate and power adaptation

Transmission rate and power are jointly adapted by applying
AMC with different power levels. Particularly, power level

�(a)
�= {ψ1(a), ψ2(a), · · · ψn(a)} is available to AMC

mode a that provides data rate R(a). In general, a larger
data rate promptly vacates MAC buffer space but suf-
fers from more transmission errors, while a higher power
level reduces transmission errors however consumes more
energy. By applying different rate-power combinations via
multiple AMC modes, therefore, the PHY layer error perfor-
mance and energy consumption, as well as MAC layer QoS
metrics (e.g., service delay or buffer overflow probability)
can be concurrently balanced through the same multi-mode
transmission scheduling design.

4. PROBLEM STATEMENT

Taking discretized FSMC states into consideration, the
transmission power applied during any time frame is now
a function of both the AMC mode a being selected and
the instantaneous channel state k, i.e., ψ(a, k)∈�(a). The
objective of power-efficient transmission scheduling is to
minimize the long-term average power consumption of the
mobile while maintaining the following QoS constraints:
(1) joint packet loss rate at both PHY and MAC layers,
i.e., either by erroneous transmission or by buffer overflow,
is below a certain level ε; (2) MAC layer average packet
queuing delay is less than the specified value δ.

To investigate such cross-layer QoS constrained trans-
mission scheduling, we convert the joint packet loss rate
constraint into the constraint on MAC layer throughput.
This avoids computing the correlated packet loss costs at
both layers separately and leads to a constrained MDP
formulation of the designed problem. Concurrently, the sta-
tionary probability p(Bn−�(Un) = k) required in Equation
(16) of Reference [7] is not needed.

4.1. Mathematical formulation

Let us consider a Poisson arrival process at the transmitter’s
MAC, which is given as:

p{A(τ) = i} = e−λτ(λτ)i

i!
i = 0, 1, · · · (3)
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where A(τ) = i denotes the event that i arrivals occur within
time duration of τ and λ is the average arrival rate in pack-
ets/s. Let Jn be the total energy consumed by the mobile
for packet transmission§ in time frame n = 1, 2, · · ·, i.e.,
during time [(n−1)Tf , nTf ). Since the arrival process and
channel variation are mutually independent and ergodic,
the long-term average power consumption ψave by process
{Jn} is then computed as:

ψave = lim
m→∞

1

mTf

m∑
n=1

Jn = 1

Tf
E(Jn) (4)

Therefore, minimizing ψave is equivalently to minimize
E(Jn), with the same average delay and throughput con-
straints. This average energy minimization problem can be
formulated as the optimization of an infinite horizon con-
strained MDP and the optimal policy µ∗ for such a problem
is randomized [15]. Namely, the action a taken in state s∈S
is probabilistically selected over its action space A(s) with
distribution function θ∗(a|s), where S denotes the entire
state space of the system. Let π∗(a, s) be the stationary
probability driven by policy µ∗ of taking a∈A(s) and the
system is in state s∈S, and π∗(s) its marginal distribution
with respect to s, then µ∗ is obtained by defining

θ∗(a|s) = π∗(a, s)

π∗(s)
= π∗(a, s)∑

a∈A(s)

π∗(a, s)
(5)

For the aforementioned energy minimization problem‖,

we define the state space asS �= K × Q, whereK andQ are
the sets of channel states and possible queue sizes in pack-
ets at the transmitter’s MAC, respectively. The AMC modes
applicable to state s∈S then constitute the action spaceA(s).
The performance constraints are given by the MAC-PHY
joint packet loss probability ξ, which implies that the long-
term MAC layer throughput is λ(1−ξ) packets/s, and the
transmitter side MAC layer average queuing delay D mea-
sured in time frames. From Equation (5) it is known that to
decide θ∗(a|s) and thereby the optimal randomized policy
µ∗ is equivalent to know each π∗(a, s). Given performance
constraints as ξ ≤ ε and D ≤ δ, therefore, the quantities
to be decided are π∗(a, s) for each a∈A(s) and s∈S, that
collaboratively minimize E(Jn) and satisfies the following

(1) performance constraints:
(a) average throughput

χ∗ ≥ λ(1−ε) (6)

§ Since the frame control section is fixed-length and transmitted with

constant power, we omit the energy consumption by this part in the

following discussion.
‖ It is helpful to note that for an ergodic process as the problem consid-

ered in this study, the denominator π∗(s) in Equation (5) is non-zero in

any policy design, which otherwise implies the existence of transient

states.

(b) average packet queuing delay

D∗ ≤ δ (7)

(2) causality constraints: [7,15]
(a) unity property

∑
a∈A(s), s∈S

π∗(a, s) = 1 (8)

(b) balance property

∑
s′∈S

∑
a′∈A(s′)

π∗(a′, s′)pa′
s′;s =

∑
a∈A(s)

π∗(a, s) ∀s∈S

(9)

(c) nonnegativity

π∗(a, s) ≥ 0 ∀a∈A(s), ∀s∈S (10)

where pa
i;j denotes the transition probability from state i∈S

to state j∈S when AMC mode a∈A(i) is applied.

4.2. Objective solution

The above linearly constrained MDP problem can be solved
by solving an associated LP problem [15], which can be
presented in matrix form as:

Minimize z = cTxSubject to Ax ≤ b,A′x=b′,x ≥ 0

where z is the objective function to be optimized, vector
c the cost vector, vector x the decision vector, respectively.
Matrix A and vector b, matrix A′ and vector b′ define the
inequality and equality constraints, respectively. LP prob-
lems can be solved efficiently by the simplex method or the
interior point method [16]. The major challenge for above
stated power-efficient transmission scheduling design lies
in formulating various performance metrics of the particular
problem into the standard LP form.

5. POWER EFFICIENT
TRANSMISSION SCHEDULING

From previous discussion it is clear that the power-efficient
transmission scheduling is achieved by applying the optimal
randomized policy µ∗, which is available by solution of
the associated LP problem presented in subsection 4.2. To
form such an LP problem, it is thus equivalent to define
the components of A, A′ matrixes and c, x, b, b′ column
vectors in the LP problem. We next derive these elements of
the LP in context of the packet transmission system given
in Section 3.
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5.1. Reward, cost, and state transition
probabilities

We first define the reward (i.e., expected number of packets
that will be correctly received at the receiver’s MAC) and
cost (i.e., total energy consumption) in each time frame,
as well as the state transition probability pa

(k,q);(k′,q′), when
the system is in state s(k,q) and AMC mode a∈A(s(k,q))
is selected. Here, k = 1, 2, · · · , K and q = 0, 1, · · · , B

denote the instantaneous channel state and transmitter side
MAC buffer occupancy, respectively, and B is the capac-
ity of the transmitter’s MAC buffer in packets. Assuming
mutually independent packet loss over the channel, then
depending on the set {a, k, q} for a particular time frame n,
the reward Rn(a, k, q) is computed as:

Rn(a, k, q) =
νn∑
l=0

l

(
l

νn

)
[1−PERn(a, k)]lPERνn−l

n (a, k)

(11)

where νn, the number of packets transmitted in time frame
n, is determined as νn = min(q, ϕa

max), with ϕa
max denoting

the maximum number of packets that can be serviced by
AMC mode a within Tf . The packet error rate PERn(a, k)
in Equation (11) is determined by {a, k} as:

PERn(a, k) = 1

P(k)

∫ �k

�k−1

PER(a)
[
γ, ψ(a, k)

]
pγ (γ)dγ

(12)

where PER(a)
[
γ, ψ(a, k)

]
denotes the PER by applying

AMC mode a with transmission power level ψ(a, k) when
the detected SNR level by pilot symbols is γ , and probability
P(k) is computed using Equation (1) as:

P(k) =
∫ �k

�k−1

pγ (γ)dγ =
�
(
m,

m�k−1
ρ

)−�
(
m,

m�k

ρ

)
�(m)

(13)
where

�(m, x) =
∫ ∞

x

tm−1e−tdt (14)

is the complementary incomplete Gamma function [17].
Depending on the set {a, k, q} for a particular time frame

n and noticing that only data-carrying portion of the time
frame consumes energy (see Figure 2), the cost Cn(a, k, q)
is given as:

Cn(a, k, q) =
⌈

Lpνn

η(a)

⌉
1

Rs

ψ(a, k) (15)

where we denote by η(a) the symbol efficiency of AMC
mode a in bits/symbol, Lp the packet size in bits and Rs the
PHY layer symbol rate in baud, respectively.

The state transition probability from s(k,q) to s(k′,q′) by
applying AMC mode a∈A(s(k,q)), i.e., pa

(k,q);(k′,q′), is defined
according to the set {a, k, q, k′, q′} as:

(1) if |k−k′| < 2 and q−min
(
q, ϕa

max

) ≤ q′ < B, then

pa
(k,q);(k′,q′) = p

{
A(Tf ) = q′−[

q−min
(
q, ϕa

max

)]} × pk;k′

(16)

(2) if |k−k′| < 2 and q−min
(
q, ϕa

max

) ≤ q′ = B, then

pa
(k,q);(k′,q′) =

∞∑
j=B−[q−min(q,ϕa

max)]

p{A(Tf ) = j} × pk;k′

(17)

(3) for any other sets of {a, k, q, k′, q′}, pa
(k,q);(k′,q′) = 0.

These definitions are based on the following facts:

(1) channel state transitions only occur between neigh-
boring states, as given in subsection 3.2;

(2) in any time frame n, νn = min
(
q, ϕa

max

)
packets are

serviced;
(3) for any state transition, the ending queue state q′ is

no less than q−νn;
(4) packet arrival process can be viewed as independent

from channel fading dynamic.

The channel state transition probability pk;k′ in Equations
(16) and (17) can be found in Reference [14].

5.2. Forming LP elements

As discussed in subsection 4.1, the multiple variables to
be concurrently decided are the stationary probabilities
π(a, k, q), where a∈A(s(k,q)), k∈K, q∈Q, i.e.,

x = [
π
(
A(s(1,0)), 1, 0

)
, · · · , π

(
A(s(K,B)), K, B

)]T
(18)

with each π
(
A(s(k,q)), k, q

)
being the row vector consisting

of all π(a, k, q) items where a∈A(s(k,q)).
The objective function z to be minimized, i.e., E(Jn)

defined in subsection 4.1, can be computed by Equation
(15) as:

z = E(Jn) =
∑

a∈A(s(k,q))
k∈K, q∈Q

Cn(a, k, q)π(a, k, q) (19)

Therefore, the cost vector c is given as:

c = [
Cn

(
A(s(1,0)), 1, 0

)
, · · · , Cn

(
A(s(K,B)), K, B

)]T

(20)
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with each Cn
(
A(s(k,q)), k, q

)
being the row vector consist-

ing of all Cn(a, k, q) items where a∈A(s(k,q)).
Following the same manner, matrix A and vector b that

define the inequality constraints given in Equations (6) and
(7) are obtained, respectively, as:

A =
[
w1

w2

]
b =

[
z1

z2

]
(21)

where w1 and z1 are given respectively as:

w1 = −[
Rn

(
A(s(1,0)), 1, 0

)
, · · · , Rn

(
A(s(K,B)), K, B

)]
(22)

z1 = −λ(1−ε)Tf (23)

Now we consider the Little’s Theorem [18] that translates
the delay constraint in Equation (7) as:

D = q

λqTf
≤ δ (24)

where q and λq denote the average queue size and aver-
age enqueued arrival rate (i.e., exclusive of the overflowed
packets) in packets/s, respectively. The value of q can be
obtained by marginal distribution of the buffer occupancy
as:

q =
∑
q∈Q

q ×
∑
k∈K

∑
a∈A(s(k,q))

π(a, k, q) (25)

To form w2 in Equation (21), define a zero-one matrix
ek for states s(k,q)(q∈Q) as:

ek =




11×ω(k,0) 0 0 0
0 11×ω(k,1) 0 0
...

...
. . .

...
0 0 0 11×ω(k,B)




where 1u×v is a u × v matrix with all elements are 1 and
ω(k, q) the size of A

(
s(k,q)

)
. Then Equation (25) can be

represented as:

q = Q × �0 × x (26)

with Q and �0 being defined as: Q = [0, 1, · · · , B], �0 =
[e1, e2, · · · , eK]. Since the buffer size is finite as B packets,
the enqueued arrival rate λq in Equation (24) may be less
than the actual arrival rate λ, due to buffer overflow. Con-
sider that when the system reaches stable state, the average
enqueued arrival rate always matches the average departure
rate into the channel. Therefore, we obtain λq by evaluating
the average service rate κ, which is scheduling dependent
and can be computed as:

λq = κ = U × x

Tf
(27)

where U is in the form of U =[
vA(s(1,0)), vA(s(1,1)), · · · , vA(s(K,B))

]
, with each vA(s(k,q))

being a row vector consisting of all ν = min
(
q, ϕa

max

)
items, as defined in subsection 5.1, and a∈A(s(k,q)).
Substituting Equations (26) and (27) into (24), the terms
of w2 and z2 in Equation (21) are finally presented as:
w2 = Q × �0−δU, z2 = 0.

Next, the balance property given in Equation (9) can be
organized in matrix form as: P × x = �1 × x, where

P=




p
A(s(1,0))
(1,0);(1,0) . . . · · · p

A(s(K,B))
(K,B);(1,0)

... p
A(s(1,1))
(1,1);(1,1) · · ·

...
...

...
. . .

...
p

A(s(1,0))
(1,0);(K,B) . . . . . . p

A(s(K,B))
(K,B);(K,B)




and

�1 =




e1 0 0 0
0 e2 0 0
...

...
. . .

...
0 0 0 ek




with each p
A(s(k,q))
(k,q);(k′,q′) being a row vector consisting of all

pa
(k,q);(k′,q′) items where a∈A(s(k,q)).
Combining Equations (8) and (9), the matrix A′ and vec-

tor b′ that define equality constraints of the LP problem are
achieved respectively as:

A′ =
[
P−�1

11×�

]
b′ = [

01×S 1
]T

(28)

where � = ∑
(k,q)∈K×Q ω(k, q), i.e., the size of x, and S =

K × (B + 1), i.e., the size of S.
Noting that Equation (10) is guaranteed by the definition

of x for LP in subsection 4.2, with A, A′, b, b′, c, and
x obtained above, the LP problem that decides the opti-
mal transmission scheduling design can be solved using the
simplex method [16] or other commercial LP packages. The
optimal randomized policy µ∗ discussed in subsection 4.1 is
finally obtained by applying the solution of x into Equation
(5).

6. DESIGN VERIFICATION AND
ANALYSIS

In this section, we verify the optimal scheduling policy
design proposed in Section 5 with Monte Carlo simulations,
and observe its properties with further analysis.

6.1. Simulation setup

In the simulation we apply the five convolutionary
coded Mn-ary rectangular quadrature-amplitude modula-
tion (QAM) transmission modes as the TM2 defined in
Reference [14], with presence of additive white Gaussian
noise (AWGN) to represent multiple AMC modes. In rate
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ascending order, these AMC modes are referred to as mode
1 to mode 5, respectively. Moreover, there is a null mode,
referred to as mode 0, where no packet transmission takes
place due to deteriorated channel condition or empty buffer.
The average PER by different transmission modes of TM2
over AWGN is approximated as [[14], Equation (3)]:

(29)

where n̂ = 1, · · · , 5 is the transmission mode index and
is the instantaneous received SNR per symbol. The cor-

responding value of fitting parameters αn̂, gn̂, and for
packet length Lp = 1080 bits are given by Table II in Ref-
erence [14] and applied in our simulations.

Let ψ0 be the constant power level for transmitting
pilot symbols. The SNR level for receiving data
packets transmitted by AMC mode a and power level
ψ(a, k), when SNR level γ is detected by pilot sym-
bols in the frame control section, is then determined

as . Without loosing generality, we can
assume ψ0 = 0 dB. Therefore, the value of PERn(a, k)
in Equation (12) is obtained by substituting
determined in Equation (29) with .
In the simulation, we set the value of ψ(a, k) as the
power level to achieve average PER of 10−3 (denoted as
PPHY = 10−3)¶ by Equation (29) at the lower bound SNR
threshold (detected by pilot symbols) of FSMC state k, i.e.,
�k−1, with AMC mode a.

The channel status is partitioned into seven FSMC states,
where state k = 1 corresponding to SNR range γ∈[0, �1)
is not used for data transmission to avoid deep channel
fades. The other six channel states are partitioned over
γ∈[�1, +∞) by the equal probability partition method
given in Reference [13]. We set the value of �1 as the value
of defined in Equation (29) for transmission mode 1.
With these definitions, the action space for each system
state s(k,q)∈S is then decided as:

A
(
s(k,q)

) =
{

mode 0 (k = 1 or q = 0)
mode 0, 1, · · · , 5 (k > 1, q > 0)

(30)

In the simulation we set the average queuing delay con-
straint as δ = 2 time frames and average packet loss rate
constraint as ε = 10−1. Other relevant parameters used for
simulation are listed in Table I.

6.2. Results and discussion

Figures 3--5 show the minimum average power ψave, aver-
age packet loss rate ξ and average packet queuing delay D,

¶ Note that this value only serves to define the power level of ψ(a, k).

The packet loss constraint ξ is defined across MAC and PHY layers.

Table I. Simulation Parameters.

� (pilot symbols) 15 dB
fm 10 Hz
Tf 1 ms
� 103−8 × 103 packets/s
B 15 packets
Lp 1080 bits
Symbol rate 2.26 MBaud (2260 symbol/frame)
Frame control 100 symbol/frame
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Figure 3. Minimum power consumption by optimal scheduling
policy.
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Figure 4. Average packet loss rate by optimal scheduling policy.

respectively, by computing the proposed solution in Section
5 and by simulating the generated optimal policy given in
Equation (5). It is seen in the figures that analytical com-
putations and simulation experiments agree on the same
minimal average power consumption while both required
performance metrics, i.e., ξ and D, are constantly below
the specified levels. With successful verification of the pro-
posed solution, the following discussion is only based on
analytical computations.
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Figure 5. Average packet queuing delay by optimal scheduling
policy.

6.2.1. Cross-layer dynamics.

It is interesting to note that in Figures 4 and 5 though the
optimal transmission scheduling policy constantly main-
tains the two performance constraints under their specified
level, in Figure 4 the average packet loss rate drops off 10−1

at light load points (λ < 3 × 103 packets/s), while in Fig-
ure 5 the average packet queuing delay fades away from 2
time frames at heavy load points (λ > 4 × 103 packets/s).
This behavior reveals the MAC-PHY cross-layer dynam-
ics associated with the control policy. Particularly, when
the offered traffic load is light, the very small queue size
excludes MAC layer buffer overflow. Hence, packet loss
is only incurred by PHY layer channel errors. This allows
the scheduler to, for the sake of saving power, avoid using
bad channel states and transmit only when good channel
states appear, till q is enlarged so that further increasing
queuing delay is not allowed by the specified delay con-
straint δ. Therefore, in light load scenario the control policy
is uniquely driven by the average queuing delay constraint,
as shown in Figure 4. Similarly, when the offered traffic
load becomes heavy, packets are pushed to pass the MAC
buffer faster in order to alleviate buffer overflow and thereby
to maintain the specified packet loss constraint ε. Though
the scheduler endeavors to drop more packets at the MAC
layer to save power, the value of D is still pulled down
by increased traffic load. Consequently, in heavy load sce-
nario the control policy is uniquely driven by the cross-layer
packet loss constraint, as shown in Figure 5.

6.2.2. Optimality comparison.

Next, we continue to see the optimality of the policy
determined in Section 5. In this experiment, the optimal
policy is compared with two suboptimal policies:

(1) policy suboptimal one enforces low rate transmis-
sion mode (mode 0 or mode 1) when the MAC
queue occupancy is less than 4 packets. This pol-
icy variant intends to reduce channel errors and still

Figure 6. Minimum power consumption by optimal and two sub-
optimal scheduling policies.

achieve required cross-layer QoS constraints, emu-
lating PHY layer error-free cross-layer power control
schemes in the literature (e.g., [6]).

(2) policy suboptimal two enforces high rate transmis-
sion mode (mode 5) when the MAC queue occupancy
is more than 11 packets. This policy variant intends to
minimize buffer overflow without violating required
cross-layer QoS constraints, emulating MAC layer
dropping-exempt cross-layer power control schemes
in the literature (e.g., [7]).

This can be done by applying another performance con-
straint in addition to Equations (6) and (7) as π(a, s) = 0
where a = mode 2, 3, 4, 5 and s∈s(k,q<4) for policy sub-
optimal one, and a = mode 0, 1, 2, 3, 4 and s∈s(k,q>11) for
policy suboptimal two.

Figure 6 compares the minimum power consumption by
these suboptimal policies and the optimal policy. It is shown
that when the offered traffic load increases, the MAC buffer
tends to be fully occupied irrespective the scheduling effort
and hence policy suboptimal one becomes identical to the
optimal policy. However, since the additional constraint
applied in policy suboptimal two limits the scheduling
diversity when the MAC buffer tends to be fully occupied,
this affects the scheduling decision even when the buffer is
lightly occupied. Therefore, policy suboptimal two behaves
differently from the optimal policy for all loading scenarios.
Nevertheless, different performance between the subopti-
mal policies and the optimal policy is always recognized by
more power consumption in the former.

6.3. Boundedness analysis

In the previous sections, we have assumed that the per-
formance constraints on average packet queuing delay and
average packet loss rate are appropriately given and achiev-
able. In this section, we investigate the boundedness of these
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two constraints and to define their feasible range for a par-
ticular system setting. We first define the feasible range of
D without constraining on ξ. Then for each feasible delay
constraint value δ, the lower bound of delay limited average
packet loss rate, i.e., ξL, can be found#.

6.3.1. Unconstrained delay bound.

When only the average packet queuing delay D is con-
sidered, it is apparent that the minimum value of D can be
achieved by applying the highest rate transmission mode
aH (k, q)∈A(

s(k,q)

)
for each state s(k,q), which in the exper-

imental setup of subsection 6.1 means aH (k, q) = mode 0
for k = 1 or q = 0, and aH (k, q) = mode 5 otherwise. This
leads to an unconstrained MDP formulation driven by deter-
ministic policy µH that applies aH (k, q) for each state
s(k,q)∈S. The lowest delay bound DL can be computed by
Equation (24) as

DL =

K∑
i=1

B∑
j=1

(j × σ(i,j))

K∑
i=2

B∑
j=1

(
min

(
j, ϕ

aH (i,j)
max

) × σ(i,j)

) (31)

where σ
�= {

σ(k,q)|k∈K, q∈Q}
denotes the stationary dis-

tribution of the resultant Markov chain and can be obtained
from the state transition probability matrix of the Markov
chain as given in [[19], Proposition 1].

6.3.2. Delay limited packet loss bound.

For a given value of δ∈[DL, +∞), ξL(δ) can be solved by
minimizing ξ with the constraint on average queuing delay,
using the same LP method discussed in Section 5. For exam-
ple, removing w1 and b1 from Equation (21) and setting w1

as the objective function of the LP, ξL(δ) is obtained as:

ξL(δ) = 1 + χH (δ) ∗ Tf

λ
(32)

where χH (δ) = argxmin(w1 × x), subject to Equations (7--
10).

6.3.3. Determining instantaneous power

levels.

The above boundedness analysis can be used to deter-
mine the instantaneous power level ψ(a, k) applied to each
transmission mode and channel state. Namely, the selection
of ψ(a, k) should ensure that the required constraints on
average queuing delay and packet loss rate are achievable.
Assuming the set of available power levels for a particu-
lar system is T, to determine the optimal combination of

# It is obvious that here only the lower bound of D and ξ are interested.

ψ(a, k) that can satisfy the required delay and packet loss
constraints, the following procedure applies:

(1) for the given performance constraints D < δ and ξ <

ε, find subset T̂∈T that achieves DL ≤ δ and ξL(δ) ≤
ε with selected combinations of ψ(a, k);

(2) for the estimated traffic load, find the optimal com-
bination of ψ(a, k) within T̂ as τ = argτ∈T̂min(ψave)
using the proposed solution in Section 5.

7. CONCLUSION

In this paper, we have studied the power-efficient transmis-
sion scheduling from a mobile station to the base station
over wireless fading channel. The detailed solution of
applying classical MDP and LP theories to such a packet
transmission system is presented. Alongside minimizing
the average power consumption, the proposed solution
allows dynamical balancing PHY and MAC layer behaviors
to achieve required cross-layer performance. Finally, the
designed transmission scheduling scheme is experimentally
verified and investigated with more insightful analysis.
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